The influence of cognitive profile in the problem-solving abilities of students with ASD

Polo-Blanco, I.¹, Suárez-Pinilla, P.², Goñi-Cervera, J.¹, Olivera, B.¹, Suárez-Pinilla, M.³, Payá, B.² ¹Universidad de Cantabria, Spain; ²Hospital Marqués Valdecilla, Spain; ³ UCL, London

Introduction	Results								
 Recent increase in the number of students with autism spectrum disorders (ASD) who attend general education classrooms (McDonald et al., 2019). 	COGNITIVE ABILITIES AND MATH PERFORMANCE								
	Neurocognitive Scores Based on the Accuracy Rate Groups in ASD and non-ASD Students								
 Growing interest in studying the academic performance of these 		ASD (<i>N</i> =26)				Non-ASD (N=26)			
individuals, and in particular their mathematical performance		≤25% (<i>n</i> =15)	>25% (<i>n</i> =11)			≤25% (<i>n</i> =6)	>25% (n=20)		
 In ASD individuals, cognitive deficits that could interfere with mathematical 	Neurocognitive variables	Mean (SE)	Mean (SE)	F(1, 24); p	Effect size	Mean (SE)	Mean (SE)	F(1, 24); p	Effect size
performance during the problem-solving process	Executive functions								_
	Working memory	86.85 (3.48)	93.93 (4.36)	F=1.12; p=.302	$\eta^2 = 0.05$	99.53 (5.40)	100.84 (2.63)	<i>F</i> =0.04; <i>p</i> =.841	
 In ASD individuals, more rudimentary math problem-solving strategies like 	Response set	6.28 (1.27)	8.84 (1.20)	F=1.522; p=.235	$\eta^2 = 0.09$	10.05 (1.72)	8.63 (0.63)	F=0.68; p=.423	$\eta^2 = 0.04$
those based on drawing and counting persist	Inhibition	4.82 (1.06)	9.07 (1.33)	<i>F</i> =4.34; <i>p</i> =.050*	$\eta^{2}\!\!=0.17$	10.78 (1.67)	8.86 (0.81)	F=0.93; p=.346	$\eta^2 = 0.04$
 We examine relationships between mathematical problem-solving 	Verbal comprehension	83.81 (3.32)	97.98 (4.16)	F=4.94; <i>p</i> =.037*	$\eta^{2}=0.19$	105.47 (4.57)	104.81 (2.23)	<i>F</i> =0.01; <i>p</i> =.905	$\eta^2 = 0.00$
performance (in terms of the strategies used and accuracy of responses)	Social perception								
and the main cognitive domains associated with mathematical	Affect recognition	7.78 (1.15)	7.12 (1.44)	F=0.08; p=.706	$\eta^2 = 0.00$	10.09 (0.95)	9.87 (0.46)	F=0.04; p=.844	$\eta^2 = 0.00$
	Theory of Mind	13.50 (1.54)	20.13 (1.92)	F=5.08; p=.035*	$\eta^2 \!\!= 0.20$	23.06 (0.97)	22.38 (0.47)	<i>F</i> =0.34; <i>p</i> =.561	$\eta^2 = 0.02$
performance of children with and without ASD.	Note. ASD: Autism Spec	trum Disorder with	out intellectual di	sability; SE: Standard	l Error; η ² = Partia	l eta squared effect	size		
	*: <i>p</i> ≤.05								

Objectives

- Study strategies used during the mathematical problem-solving process \bullet both in autistic and non-autistic students.
- Determine associations between the level of abstraction of the strategies \bullet used, and the main cognitive domains associated with mathematical performance, such as executive functions, verbal comprehension and social perception (affect recognition and Theory of Mind).

Methodology

• Participants. 26 autistic and 26 non-autistic children without intellectual disabilities, between 6 and 12 years old, matched by sex, age and school (grade and classroom).

	ASD (N=26)	non-ASD (N=26)	Statistics	р	Effect size
Sex (males)	23 (88.4%)	23 (88.4%)	$\chi^2(2) = 0.00$	1.000	$\Phi = 0.00$
Age (years)	9.35 (2.06)	9.41 (1.96)	t (50) = -0.10	.922	<i>d</i> = -0.03
Parental SES			$\chi^2(4) = 4.56$.336	V = 0.30
V (High level)	5 (19.2%)	9 (34.6%)			
IV (High-middle level)	8 (30.8%)	8 (30.8%)			
III (Middle level)	8 (30.8%)	3 (11.5%)			
II (Low-middle level)	4 (15.4%)	3 (11.5%)			
I (Low level)	1 (3.8%)	3 (11.5%)			
Mathematical competence					
TEMA-3 score	54.00 (13.15)	62.81 (10.19)	t(50) = -2.70	.009**	<i>d</i> = -0.75
Mathematical age	7.56 (1.10)	8.38 (0.93)	t(50) = -2.89	.006**	<i>d</i> = -0.81
Intelligence					
WISC-FSIQ	89.88 (11.78)	102.00 (10.98)	t(50) = -3.84	<.001**	<i>d</i> = -1.06
Executive Functions					
Working memory	89.85 (12.47)	100.54 (11.56)	t(50) = -3.19	.002**	<i>d</i> = -0.89
Response set	7.62 (3.44)	8.71 (3.04)	t(50) = -1.09	.281	<i>d</i> = -0.34
Inhibition	6.62 (3.31)	9.31 (3.80)	<i>t</i> (50) = -2.72	.009**	<i>d</i> = -0.75
Verbal comprehension	89.81 (<i>19.29</i>)	104.96 (11.84)	t(50) = -3.41	.001**	<i>d</i> = -0.95
Social perception					
Affect recognition	7.50 (3.34)	9.92 (1.94)	t(50) = -3.20	.002**	<i>d</i> = -0.89

- Among ASD students, lower level of abstraction of strategy by poorer \bullet performing ASD students (< 25% correct responses) with respect to the rest of the ASD group.
- In the non-ASD group, no differences in the strategy used. \bullet
- Positive correlation between the level of abstraction of the strategy used and three cognitive variables - inhibition, cognitive flexibility and ToM - in the whole group of ASD children, not found in the non-ASD group

Discussion

- Higher proportion of subjects with ASD (57%) compared to subjects without ASD (23%) in the group of poorer performers (≤ 25% correct answers).
- In the groups with the highest performance (success rate > 50% correct responses), there were no differences in the proportion of ASD compared to the non-ASD subjects.
- Poorer performing students with ASD used less elaborate strategies than the rest of ASD students
- positive correlation between the level of abstraction of the strategy used and three cognitive variables - inhibition, cognitive flexibility and theory of

• Mathematical problem solving strategies (example for a 4x8 problem): (1) incorrect strategies (e.g. performs a sum 4+8)

(2) direct modeling with counting (e.g. draws four groups with eight objects each, and counts everything);

(3) counting strategies (e.g. repeated addition 8 + 8 + 8 + 8); and (4) number facts (solves the multiplication 4x8).

Results

MATH PERFORMANCE

Mathematical Problem Solving in ASD and non-ASD Students								Model-Based Problem Solving (COMPS) approach have been successfully					
	ASD (<i>N</i> =26)	non-ASD (N	<i>I</i> =26)	Statistics	p	Effect size	adapted to ASD students' characteristics improving their ability to solve					
MPI median score	1.98 (1.34),	range:1-4	2.35 (1.38),	range: 1 – 4	t(50) = 0.44	.339	<i>d</i> = -0.27	mathematical problems (Bruno et al., 2021; García Moya et al., in press;					
Accuracy (out of 1)	0.35 (0.38),	range:0 – 1	0.50 (0.28),	range: 0.13 – 1	t(50) = -1.62	.112	<i>d</i> = -0.45	Polo-Blanco et al., 2021, 2022))					
Level of accuracy	Observed	Expected	Observed	Expected									
0-25%	15 (57%)	10.5 (40.4%)	6 (23%)	10.5 (40.4%)	Fisher's=8.57	.034*	V = 0.41	Acknowledgments. This work was supported by project PID2019-					
26-50%	3 (11.5%)	7 (26.9%)	11 (42.3%)	7 (26.9%)				105677RB-I00 funded by MCIN/AEI/10.13039/501100011033					
51-75%	3 (11.5%)	3.5(13.5%)	4 (15.4%)	3.5 (13.5%)									
76-100%	5 (19.2%)	5 (19.2%)	5 (19.2%)	5 (19.2%)									
SD: Standard deviation; V	= Cramer's V.					-							
								Bibliography 1. Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children's intuitive models of multiplication and					
Project we	b: <u>https://m</u>	natematio	casyautis	smo.unica	<u>n.es/</u>			 division. Journal for Research in Mathematics Education, 28(3), 309-330. Polo-Bianco, I., Van Vaerenbergh, S., Bruno, A., & González, M. J. (2022). Conceptual model-based approach to teaching multiplication and division word-problem solving to a student with autism spectrum disorder. Education and Training in Autism and Developmental Disabilities, 57(1), 31-43. Xin, Y. P. (2012). Conceptual Model-Based Problem Solving: Teach Students with Learning Difficulties to Solve Math Problems. The Netherlands: Sense Publishers. 					

- mind (ToM) in the group of subjects with ASD, but not in the non-ASD group.
- it could be hypothesized that the use of simplistic strategies to solve mathematical problems by the population with ASD is indicative of cognitive deficits in these functions.
- This could help to identify the subgroup of students with ASD with the most mathematical difficulties.
- ASD students who exhibited poorer mathematical performance (i.e., \leq 25% of correct responses) were comparatively impaired in terms of inhibition, theory of mind and verbal comprehension.

Conclusions

- Our results help understanding mathematical problem-solving difficulties in students with ASD.
- direct implications on the design of educational interventions in subjects with ASD and mathematical difficulties.
- Interventions should consider stimulating the cognitive functions involved in mathematical problem solving that are more affected in ASD population (cognitive flexibility, inhibition, theory of mind and verbal comprehension)
- Some methodologies Schema Based Instruction (SBI) or the Conceptual **C**. . I I. .

Autism Europe Congress 2022 Cracovia, (Poland).

This work has been supported by the project with reference PID2019-105677RB-I00 funded by MCIN/ AEI /10.13039/501100011033.